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1. Introduction:

The biggest limitation to the prediction of nearshore waves dynamics and
circulation is typically a lack of recent, accurate bathymetry data. Since collecting
bathymetry data using traditional survey methods is logistically difficult and
expensive, there has been a long history, dating back to WWII, of attempts to
estimate sufficiently accurate bathymetry based on various remote-sensing
signaturesl. Some success has been achieved but algorithms have typically not
reached a production level that can be operated and trusted on a daily basis?.

cBathy is a new algorithm for bathymetry estimation that is based on the well-
known dependence of wave celerity, ¢, on depth. From extensive testing, the
current algorithm appears to be quite accurate and robust to noise. This document
is intended to complement the journal paper, herein referred to as HPH13, and will
not repeat the details of the algorithm or testing. Instead, this document is intended
to serve as a user manual to introduce users to the practical aspects of cBathy
collection and analysis and to provide a short description of the principles that
allow cBathy to succeed even under very noisy conditions. Section 2 describes
background about the complications of bathymetry estimation from optical sensors
and the principles adopted by cBathy. Section 3 describes the principles for design
of the sampling array and analysis design and discusses the three phases of analysis
and the corresponding nature of the bathy structure that is the output by cBathy.
Section 4 describes the process error that is required for Kalman filtering while
section 5 discusses the settings file that is used to configure the analysis for any new
site. Section 6 gives a short note on using cBathy with a parallel processing version
of MATLAB. Finally, section 7 contains a lengthy description of debugging support
in cBathy. Appendix A includes an m-file used to establish the cBathy pixel
collection array for an example field site.

2. Principles and Objectives:
cBathy is based on the linear dispersion relationship,

0’ = gktanh(kh) (1

1 References and more extensive discussion are contained in Holman, et al, xxxx,
(hereafter HPH13) and will be omitted from the user manual.

2 BeachWizard is an exception although it is computationally expensive, commonly
used with dissipation data only that provide no information outside the surf zone,
and requires manual monitoring to deal with the common noise sources in the
nearshore and the complications of long-term sampling.



where oand k are the radial frequency (equals 2r the wave period, T) and radial
wavenumber (equals 2r divided by the wave length, L), respectively, g is the
acceleration due to gravity and h is the depth. For the idealized lab conditions of a
monochromatic wave field, the wave period and wavelength are easily identified so
depth can be found as the only remaining unknown in equation (1).

In real seas, many complications arise. Waves are never monochromatic so the
observed ocean surface is really the superposition of many sets of waves with
different frequencies, wavelengths and directions (although each frequency-
wavelength pair reasonably satisfies equation (1)). Moreover, optical contrast is
dominated by short ocean wavelengths, or clutter, not the longer wavelengths that
provide a better sensitivity to depth in equation (1) and contain the main energy
that drives nearshore circulation. Also, optical data often includes serious
contamination in the form of sun glint, rain drops on lenses and opaque fog. Manual
intervention can eliminate these bad days, but this introduces an ongoing and
unnecessary labor obligation.

As noted in HPH13, the goal of the cBathy algorithm is to extend previous work with
an algorithm that is fully two-dimensional but benefits from the high resolution
capabilities of non-Fourier spatial methods. The method must be robust to noise
and unanticipated signals like sun glare, passing clouds and rain spots on lenses, and
must return confidence estimates that can be used in downstream products such as
operational nearshore prediction models.

cBathy contains algorithms that reflect many decades of experimentation and
experience. The goal of this user manual is to advise potential users on the
implementation practices that will be most consistent with the assumptions and
development philosophy of cBathy.

3. The Algorithm

The heart of cBathy is the determination of accurate wavenumbers for a number of
candidate frequencies supplied by the user in the settings file3. This is carried out at
an array of analysis points [Xm, ym] that are also user supplied. From these results,
depths can be estimated using equation (1). The algorithm works in three phases
and the results are stored in a bathy MATLAB structure that also has three major
components (one for each phase). Details of the three algorithm phases are
contained in HPH13 and won'’t be described. Instead, the design of the sampling
array and the details of the bathy structure will be described in sections 3.1 and 3.2,
respectively.

3 The settings m-file creates a variable structure called ‘params’ that contains all the
user-controllable options for any analysis. The terms settings and params will be
used interchangeably in this text.



Adopting cBathy for a new field site is fairly straightforward and involves three
elements: 1) establishing and implementing an appropriate data collection (a fairly
simple pixel stack collection in Argus), 2) modifying the settings file (params) to
have values appropriate to the new site, and 3) adding a new case to
findProcessError to describe the expected natural variability at the site. In addition,
there may be bookkeeping issues to be resolved, for example file naming and file
storage conventions. For Argus, these are well established but may take some
design and trial and error for other data protocols and organizations.

[t should be realized that cBathy assumes that the x-axis points offshore and the y-
axis increases to the left as you face offshore. For other convention, you should
rotate into a local system like this and run cBathy in this new system. You can rotate
back to local for subsequent products.

3.1 The Sampling Array

The input data for the main cBathy analysis (m-file analyzeBathyCollect) is an array
of time series (an N by M array, data) collected at a grid of user selected 3D locations
(an M by 3 array, xyz) at a regular set of sampling times (an N by 1 vector, epoch).

In addition, analysis parameters, input filename and the start time of the analysis
are passed in using the variable structure ‘bathy’ (see analyzeSingleBathyRun for an
example of usage). These data can be the result of pixel data collections, radar data
collections or collections from any other sensor available to the user, assuming
sufficient density of coverage is available (see the following). This user guide will
assume the input to be optical data collected by Argus and the spatial array will be
referred to as a suite of pixel locations*. The user is responsible for establishing the
data collections at reasonable resolution. Figure 1 shows an example pixel array for
Duck, NC. Appendix A lists an m-file used to create a cBathy pixel sampling array for
an example Argus site.

4To control data volumes, Argus pixel time series collections sample a small subset
of all for the pixels in each image - see HPH13
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Figure 1. Standard pixel array for Duck, NC. Time series are collected at every dot
(half omitted for clarity). Analysis at any example location (e.g. red asterisk) is
based on data from surrounding tile of pixels (green dots) of size +/-Lx and Ly.

Temporal sampling at each pixel should be adequate to resolve the expected
dominant ocean waves, consistent with how you would sample ocean waves with a
single in situ sensor. For Argus, we use 2 Hz sampling and record lengths of 2048
points (a power of 2 to allow Fast Fourier Transforms) or approximately 17
minutes. Data runs are typically collected hourly but can be reduced to half-hourly
for field experiments or places where conditions (for example, tide or morphology)
change rapidly.

Spatial sampling should be adequate to resolve the anticipated dominant
wavelengths. For Atlantic Coast US beaches we have used cross-shore and
alongshore spacing of 5 and 10 m, respectively. For an 8 s wave in 1 m depth, the
wavelength will be ~25 m, so this pixel spacing provides 5 points per wavelength in
the cross-shore (and alongshore length scales are longer, so can be well resolved
with a larger sample spacing).

Samples can feasibly be collected out to very large range (out to the horizon!). But
at large range, the pixel resolution becomes worse than the requested array spacing
so pixels smear together and waves are no longer resolved. It is recommended that
sampling not be established with less than four pixels per expected wavelength.



3.2 The bathy structure

The bathy variable that is returned by the cBathy algorithms is a compact structure
that contains all of the relevant analysis results in one place. The overall structure
contains six initial fields that document the analysis details, followed by three sub-
structures, one for each phase in the analysis. An example of the format of the bathy

structure is:
bathy =

epoch: '1285174800'
sName: [1x64 char]
params: [1lxl struct]
tide: [1x1l struct]
xm: [1x43 double]
ym: [1x41 double]
fDependent: [1x1l struct]
fCombined: [1x1l struct]
runningAverage: [1lxl struct]

Epoch is simply the start time of the data run in standard Unix epoch time (seconds
since midnight, January 1, 1970) but could be any time stamp you wish to use.
sName is simply the name of the stack file that was analyzed. In the Argus case, we
list the filename of the first camera encountered (usually stack data are collected
across multiple cameras). Params is a sub-structure that contains all the input
settings from the Settings file (described in Section 5). This is stored both as a
record of the parameters used and as a method to pass input variables into the
analysis routines within analyzeBathyCollect.

Tide is a small structure that contains the tide level estimate used to correct the
local cBathy depth estimates (measured relative to the sea surface) to a local
vertical reference frame, for example NGVD88 or AHD. If bathy.tide.zt == nan, its
default value, then no tide level correction has been made, so this field is important
for documenting whether this correction has or has not been made (similarly, a
change of tidal reference level requires adding the old, documented level,
subtracting the new level and updating the bathy.tide fields to reflect the new level).

xm and ym are the vectors of analysis points for which bathy is estimated and are
determined by the settings file, discussed in Section 5.

The sub-structures fDependent, fCombined and runningAverage contain results
from phases 1, 2 and 3 in the analysis

3.2.1. The fDependent Sub-structure

The fDependent structure contains output from cBathy phase 1 in which all results
are expressed still as a function of frequency. Each field will include maps of results
that have the same number of rows as are in ym, the same number of columns that
are in xm, and the number of planes (maps) is equal to nKeep, the number of
frequencies that the user has asked to save in the settings file. In the case below, the



user asked to save the four strongest frequencies so the third array dimension is 4
and results are ordered from strongest to weakest signals. Note that the selection of
the strongest frequencies is made on a point by point basis during analysis so that
any plane of each variable (i.e. k(:,:;,1)) will likely not refer to a single frequency but
will instead refer to the frequency of the dominant signal at each analysis point. The
field fB contains the actual frequencies selected for each location and plane®. Fields
for which no satisfactory solution was obtained are left as nan’s. This can be
relatively common. Any variable can be plotted using (for example)

imagesc(bathy.ym, bathy.xm, bathy.fDependent.hTemp(:,:,1).

Remember that this will not plot results from a single frequency (important for
wave properties like wave angle). See section 7 for support routines.

The fDependent structure has the following fields:
bathy.fDependent =

fB: [41x43x4 double]

k: [41x43x4 double]

a: [41x43x4 double]

hTemp: [41x43x4 double]
kErr: [41x43x4 double]
aErr: [41x43x4 double]
hTempErr: [41x43x4 double]
skill: [41x43x4 double]
dof: [41x43x4 double]
laml: [41x43x4 double]

‘fB’ contains the actual frequencies selected at each location for each plane of
analysis (final dimension of the 3D arrays). ‘k’ contains the magnitude of the
wavenumber (2 divided by the wavelength) and ‘a’ contains the angle of wave
propagation in a “from” sense, in radians (for example, a = -0.5 means that those
waves are arriving from 0.5 radians CW from normal (28° from the right of normal,
looking offshore, since negative angles correspond to CW from the beach normal).
‘hTemp’ is the depth computed for this frequency-wavenumber pair using equation
(1). These depths are not used in subsequent cBathy depth analysis but are
included for diagnostic purposes.

For each variable, an associated error is also computed and saved as maps of ‘KErr’,
‘aErr’ and ‘hTempErr’. In addition, the skill and number of degrees of freedom of the
fit are saved as ‘skill’ and ‘dof’. The skill indicates the percentage of the variance
explained by fitting the local phase data to a planar surface (equation (3) in HPH13).
Skill is used as a threshold quality control condition (threshold level included in the
settings file). Finally, lam1 (the normalized eigenvector described in section 2.1 of

5> The debugging section below includes a routine that sorts bathy results by
frequency



HPH13) is recorded and also serves as a quality control variable to distinguish
useful signals from noise.

3.2.2 The fCombined Sub-structure

The fCombined sub-structure contains the phase 2 results from the cBathy
algorithm. These are maps of the depth estimates at each analysis location that best
fit a weighted combination of all of the frequency-wavenumber information
available. This yields a single bathymetry map, along with fit error information.

The fCombined sub-structure has the following fields:
bathy.fCombined =

h: [41x43 double]
hErr: [41x43 double]
J: [41x43 double]

‘h’ is the best estimate of depth while hErr is 95% confidence interval on that
estimate. ] is the Jacobian returned by the nonlinear fitting routine.

Note that results from phase 1 and 2 will be tide-corrected (i.e. adjusted to the local
vertical datum) if the value of bathy.tide.zt is other than ‘nan’. In other words, a
time series plot of depth estimates over a tidal cycle should show a constant value.

Final fCombined results for any run can be nicely displayed using the routine
plotBathyCollectSDS (SDS are the initials of Steven Spansel).

3.2.3 The runningAverage Sub-structure

The runningAverage sub-structure contains results from the Kalman filter stage,
phase 3 of the cBathy algorithm. It contains the final results of cBathy, with errors,
as well as information used in the Kalman filtering operation. While phases 1 and 2
of cBathy depend only on the current data collection, Kalman filtering depends on
both the current and the previous bathy result. Since data collections are often
retrieved from an Argus Station out of order, phases 1 and 2 are usually run by a
separate code (analyzeBathyCollect) for a set of data collections, then phase 3
Kalman filtering is run later (using runningFilterBathy), after all data collections
have been retrieved and analyzed to phase 2, to fill in the runningAverge structure.
Filtering is a fast computation and can also be re-done at any time if the user wishes
to change the filter in some way, for example by changing the process error.
Running the Kalman filter (phase 3) does not change phase 1 and 2 results in any
way (fortunately, since these early phases are the more computationally intense).
‘nan’ values of runningAverage results indicates that Kalman filtering has not yet
taken place or that no valid data has yet been encountered at those pixels with nans.
This might occur for analysis locations that are usually high on the beach, so see
waves only on occasion.

The runningAverage sub-structure has the following fields:
bathy.runningAverage =



h: [41x43 double]

hErr: [41x43 double]

P: [41x43 double]

Q: [41x43 double]

K: [41x43 double]
prior: [1x64 char]

The fields ‘h’ and ‘hErr’ are the final depth estimates of cBathy and their estimated
error, so these are the main products of the analysis. The fields ‘P’, ‘Q" and ‘K’ are
components of the Kalman computation, described in section 2.3 of HPH13. Kis the
critical value and is the Kalman gain that expresses the extent to which the current
estimate is believed compared to the previous running average values and depends
on the ratio of the error variance on the prior estimate (P) compared to the error
variance of the current estimate (hErr”2) plus P (equation (5), HPH13). So when
the current estimate is much noisier than the prior, K~0 and the new bathymetry
estimate is essentially ignored. But when the current estimate is much better than
the prior (for some reason), K~1 and the new result is dominated by the new
information. For typical conditions, after the filter has incorporated a number of
collections so has stabilized, K will commonly be around 0.1 so the new results only
slowly nudge the average slowly.

‘Q’, the process error, represents to amount that our faith in the prior running
average degrades with elapsed time due to natural sediment transport and changes
in morphology. The process error is discussed further below.

The final field, ‘prior’, is simply the file name of the prior estimate used in the
Kalman filter and can be used to confirm that files have been filtered in the proper
order.

Final running average results for any run can be nicely displayed using the routine
plotBathyCollectKalman.

4.0 The Process Error, Q

The phase 3 Kalman filter processing is key to cBathy providing reliable, robust
output based on noisy individual collection results that can sometimes be partly or
completely unusable. New results are averaged into the running average result
according to a pixel-by-pixel Kalman gain that expresses the believability of the new
result compared to that of the running average (section 2.3 of HPH13). Since the
running average bathymetry already reflects an average of many individual results,
itis likely that new estimates will only slowly nudge the average, i.e. Kalman gains
will typically be small.

If bathymetry were unchanging, then the estimated error variance of the running
average bathymetry should monotonically reduce with additional estimates, much
as predicted by the central limit theorem. However, bathymetry and nearshore
morphology change in time due to sediment transport processes, so that confidence



in a prior running average estimate should degrade with time since that estimate.
For example, you would believe that a survey from yesterday would be a much
better representation of today’s bathymetry than a survey from last month or last
year. This temporal degradation in confidence in a prior estimate (or temporal
increase in error variance) is represented by the process error, Q.

There is little available data from which estimates of the magnitude and
environmental dependences of Q can be made. HPH13 discuss one very extensive
set of daily bathymetry surveys which were used to develop the following form:
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Bathymetric variability was found to increase linearly with time, At, and with the
square of the offshore wave height, and is centered as a location xo with a Gaussian
form with standard deviation ox.

The 38-day bathymetric data set used to establish this form showed the largest
variability to be in a narrow spatial band around the bar location at that time.
However, we know that bars move in the cross-shore over time so have used a user-
selected broader set of values for the spatial Gaussian form (xo = 150, ox = 100 for
Duck, NC).

It is recommended that users applying cBathy to new sites use their best judgment
to establish the coefficients for their new site in the routine ‘findProcessError’,
choosing spatial parameters that center on locations where the maximum variability
is expected and choosing a spread, oy, that allows reasonable variability over the
region of expected climatological bathymetric variability (a reasonable sand bar
envelope region). Criteria for selecting an appropriate value of Cq for a new site are
not well known. A value that is too large will lead to running average bathymetries
that respond quickly to changes and presumably to noise. A value that is too small
means that bathymetric results will vary more slowly than truth and will lag behind
natural changes at the site. Development of an improved understanding of
appropriate values is an ongoing research topic at the Coastal Imaging Lab and will
involve bootstrapping methods wherein a first guess of Q will be used to provide
predictions of time varying bathymetry and that guess will be used to improved the
estimate of Q, etc.

Examples of Q for different sites are contained in the routine findProcessError.

5.0 The Settings File

The settings file contains all the site-specific analysis parameter in one structure,
‘params’. For Argus, settings files are m-files that are stored in the directory
cBathy/SETTINGS/ and are named after the Argus station name. For example, for



the site argus02a (our name for Duck), the m-file is called argus02a and has the
following content:

{Contents of file argus02a.m}

HAHHAHHHAHHARHHAHH A HH A H A H A H A HH A H AR A
$%% Site-specific Inputs

params.stationStr = 'argus02a';
params.dxm = 10; % analysis domain spacing in x
params.dym = 25; % analysis domain spacing in y
params.xyMinMax = [80 500 0 1000]; % min, max of x, then y

% default to [] for cBathy to choose
params.tideFunction = 'cBathyTide'; % tide level function for evel

33323 Power user settings from here down EEE AR

params .MINDEPTH = 0.25; % for initialization and final QC
params .MAXDEPTH = 15; % ditto

params.QTOL = 0.5; % reject skill below this in csm
params.minLam = 10; % min normalized eigenvalue to proceed
params.Lx = 2*params.dxm; % tomographic domain smoothing
params.Ly = 2*params.dym; %

params.kappal = 2; % increase in smoothing at outer xm
params .DECIMATE = 1; % decimate pixels to reduce work load.
params.maxNPix = 80; % max num pixels per tile (decimate excess)

% f-domain etc.

params.fB = [1/18: 1/50: 1/4]; % frequencies for analysis
(~40 dof)
params.nKeep = 4; % number of frequencies to keep

% debugging options
params.debug.production = 1;
params.debug.DOPLOTSTACKANDPHASEMAPS = 1; % top level debug of phase

params.debug.DOSHOWPROGRESS = 1; % show progress of tiles
params.debug.DOPLOTPHASETILE = 1; % observed and EOF results per pt
params.debug.TRANSECTX = 200; % for plotStacksAndPhaseMaps

params.debug.TRANSECTY 900; % for plotStacksAndPhaseMaps

% default offshore wave angle. For search seeds.
params.offshoreRadCCWFromx = 0;

HHHHHHHHHHHHHHHHHHHHHHHHHHH R AR R AR

The main items to change for a new site are the first five entries. stationStr is simply
the Argus name of this site, which is used to key the proper tide retrieval and also to
select the correct form for the process error in findProcessError (and possibly some
minor labeling issues). dxm and dym are the desired cross-shore and alongshore
spacing for analysis points (discussed in section 3.1) while xyMinMax specifies the
spatial extent of the analysis grid. If no values are entered for xyMinMax, the
program will default to values that just span the supplied pixel array. However, this
can create problems if the pixel array changes size at any point in the collection
lifetime because the returned bathymetry arrays will change size and the Kalman
filter will crash. So itis better to hard code analysis domain limits in xyMinMax.
Finally, tideFunction is a user provided function that will be called to find the tide



elevation correction. This may require some user fiddling for non-standard Argus
sites.

The next section of code is described as being for power users only (down to the f-
domain section) and can be changed, but only if you understand what you are doing.
MINDEPTH and MAXDEPTH are limits set for the nonlinear depth search in phase 2
(i.e. values outside these limits are rejected and nan’s returned). MINDEPTH is
invoked because shallow water celerity is not valid in the swash, so this should not
likely be changed. MAXDEPTH is really a site-specific value. For long Pacific Ocean
swell, waves are often present that still have depth-dependent celerities in quite
deep water whereas for semi-enclosed seas, wave periods will likely be short so
even the longest waves will not feel the bottom for anything but shallow depths. As
a guide, MAXDEPTH should be the depth for which L/Lo = 0.9 for the longer period
waves that can be expected at this site (I should really change this to depend on
some reasonable estimate of the longest waves that will occasionally be
encountered).

QTOL and lam1 are threshold quality control parameters. Results will be rejected if
the skill of the fit in phase 1 is less than QTOL or if the normalized variance
explained by the first EOF is less than lam1 (see HPH13). These values can be
reduced if data sets will always be noisy for some reason and answers are still
desired. But this is not recommended.

Lx and Ly are smoothing length scales for a) selecting the subset of pixels that
should influence the analysis at any analysis point, and b) the spatial extent of the
Hanning smoothing function in several weighting schemes in the analysis. It should
be determined as the reasonably desired spatial resolution of the underlying
bathymetry. Allowing these values to scale as twice the pixel spacing (as illustrated)
forces consistency in the analysis and also ensures that a reasonable number of
pixels are included in fitting phases to a planar surface. Since the natural scales of
morphology typically become larger offshore, it makes sense to increase this
smoothing scale from the shoreward to the seaward boundary. Kappa0 is a
multiplier that increases Lx and Ly linearly from the shoreward to the seaward
boundary (so smoothing increases linearly from Lx and Ly at the shoreward
boundary to kappa0 times these values at the seaward boundary). For a site like a
tidal delta for which shorter scale features may be widespread, kappa0 should be set
to 1.0 (no increase). Note that the effects of currents in this type of environment are
not accounted for yet in cBathy so errors will occur (this is an ongoing research
problem). The increase in Lx due to kappa0O > 1 means that the number of pixels in
each analysis tile will also increase. Since execution time depends on the square of
the number of pixels, this can slow processing substantially. maxNPix sets a
maximum number of pixels per tile, with the residual removed by decimation. Note
that the example value of 80 points yields plenty of data for fitting the phase data to
a planar surface (80 points to solve to two slope values). DECIMATE allows brute
force decimation of excess pixels and was used in development to speed processing.
This should not be changed unless you need speed for debugging.



fB is the list of frequencies for phase 1 analysis. The range of frequencies (min and
max) should match the likely wave frequencies that will be encountered at your site.
For example, Pacific Ocean beaches may see periods as long as 18 s and down to 3 or
4 seconds whereas a semi-encloses sea may see no waves longer than 10 or 12
seconds. Note that short waves are sensitive only to shallow depths, so are not as
helpful as longer period waves. The frequency resolution (in this case, 1/50) should
be selected to yield a cross-spectrum with adequate stability. Functionally, this
means that each frequency band (1/50 Hz wide in this case) should include
approximately 20 Fourier frequencies (40 degrees of freedom), so the frequency
resolution should be chosen as around 20 divided by the length of the time series in
seconds (1024 s for typical Argus collections). Higher resolutions can be used
(fewer Fourier frequencies than 20) but choices should be made with a good
understanding of the signal processing consequences. nKeep is the number of
frequencies that will be analyzed, prioritized by the overall coherence over the
analysis tile for each frequency. Increasing this number will slow computation and
could provide better stability in cases with broad spectral energy (waves with a
wide range of frequencies typically present), but in most cases examining extra
frequencies will simply be analyzing noise with little gain.

The debugging options in params will be discussed in the section on debugging.

The final parameter, offshore RadCCWFromx is the offshore wave angle, measured
in radians CCW from shore normal, that serves as the seed for the nonlinear search
in phase 1. Typically this value will be 0.0 on the assumption that waves will, on
average, come from offshore. For a site for which waves predominantly come from
a particular direction, changing his value may improve the speed of the search. Note
that this value is in RADIANS. Changing this value is not recommended except for
very special cases.

6.0. Parallel code

cBathy is compute intensive and can take significant processing time. The code has
been written to be compatible with a parallel processing version of MATLAB, if this
is available. This requires declaring a pool of parallel processors in MATLAB (use
help matlabpool). Using 6 processors on a fairly standard linux machine yields
approximately 30 second run times at OSU. Without parallel processing, runs take
more than 100 seconds.

7.0. Debugging

cBathy contains a suite of algorithms and will run even when presented with
random data (although nan’s will be returned). So when the program returns
results that don’t seem sensible, it is important to have a suite of good debugging
tools and to understand the nature or and evidence for possible failure modes.
Debugging for phase 1 computations is controlled by a series of debug flags in the
settings file. The first flag, ‘production’, is a master switch. If set to 1 (true), no



further debugging will be done. If set to 0, the remaining five flags and parameters
determine the debugging actions.

7.1. Phase 1 Debugging

The main reason for bad results is bad input data, i.e. no waves are present. The
most direct way of testing the quality of the data is first to look at the time stacks to
ensure that wave signals are present, and second to look at example phase maps to
ensure that progressive waves are being detected. Both of these checks are made
using the debug flag DOPLOTSTACKANDPHASEMAPS. Since this aspect of debugging is
done at run time, the easiest way to examine a data collection for Argus is to use
analyzeSingleBathyRun(stackName) where you chose some representative stack.
Again, for non-Argus systems, this file may need editing to make it consistent with
local conventions. By default, the analysis will proceed from shoreward to seaward,
so will commonly start with analysis locations on the beach or in the swash zone
that are not very informative. You can change to a more typical location (say just
outside the surf zone) by specifying a new minx, maxx, dx, miny, maxy, dy to make a
new analysis sub-array at locations that are much more representative. For
example, at Duck, I might use [200 250 25 700 750 25] to examine a set of analysis
tiles that are slightly offshore and away from the FRF pier.

In debug mode, cBathy starts by producing two figures that allow you to examine
the entire pixel data collection. MATLAB Figure 10 shows example cross-shore and
alongshore time stacks to test whether waves are visible in the original stack data.
The alongshore location for the cross-shore transect is determined by the params
file field debug. TRANSECTY while the cross-shore location of the alongshore
transect is determined by debug. TRANSECTX. The user should set these values to
be representative of where they wish to examine the waves. The figure has a 2 by 2
array of plots with the upper two showing the location of the transect pixels from
within the pixel array (just to confirm the locations) and the lower two subplots
showing the time stacks for the cross-shore (left) and alongshore (right) transects.
The main diagnostic figure is the bottom left plot showing the cross-shore timestack.
Figure 2 shows an example stack from Duck, clearly showing the hoped for oblique
trajectories of waves as they progress landward (toward the left) in time (toward
the bottom). [ have manually zoomed in on this figure to focus on a short time span
so that the waves are more visible. You should ensure that you also see shoreward
wave progression.
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Figure 2. Representative cross-shore time stack from cBathy plot figure 10,
subplot(2,2,3). Oblique trajectories from top right to lower left correspond to waves
propagating from offshore to landward (left) as time passes (lower in the figure).
The figure has been manually zoomed (in the time axis) to allow propagation to be
clearly seen (you should also do this to ensure that you actually see wave
propagation). The darker right hand portion of the figure is because those pixels are
from a different camera than on the right and had a different gain. This is
normalized in the analysis so is not an issue.

cBathy Figure 11 shows phase maps over the entire collection array for each of the
candidate frequencies, fB, selected by the user in the settings file. User manual
Figure 3 shows several example frequencies (2 out of 11 possible {B values, in this
case). The main point of this figure is also to determine if the pixel stack contains
wave-like motions. This is confirmed by seeing full color banding in this figure
showing that cBathy is detecting wave phases changing spatially through the full
range from - to  ( @ smooth-ish transition from blue through yellow to red then a
jump back to blue) with spatial scales that seem comparable to ocean wave scales.
Bad data will yield colors that are not the full range or will yield patterns without
wave-scale features. Note that these phase maps are created for a suite of individual
(single) frequencies bands in the Fourier transform, so are typically quite noisy.
Thus the patterns may look less organized than you might hope for ocean waves,
particularly for frequencies with little ocean energy on that day. Similarly, some
high frequencies may show up with long apparent wavelengths if they correspond
to harmonics of a stronger low-frequency wave swell. The main point is to ensure
that wave-like motions are detected.

Continuing after the prompt by hitting carriage return, cBathy will step through the
analysis locations supplied by the user showing map results for each tile and
frequency as well as numerical results. An example tile map is shown in Figure 4
below and has a 2 by 2 array of subplots (note that multiple plots will be made and
may be lying on top of each other). The left two subplots show the observed and
modeled phase surface for the first EOF for a particular frequency while the right
plots show the observed and modeled amplitude maps. The observed phase map
should show a phase ramp from right to left (jumping at each transition from = to -



nt), illustrating shoreward propagation of the wave. The magnitude and direction of
wavenumber are found from the slopes of this phase surface.
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Figure 3. Phase maps for the entire collection domain for 2 of 11 possible
frequencies from an example analysis. Colors show wave phase varying reasonably
from - to t with scales typical of ocean waves, confirming that the input stack data
appears to have useful signals.
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Figure 4. Phase maps of the dominant EOF within an example analysis tile with EOF
phase on the left and magnitude of the right. The observed values (upper panel)
should match the modeled values (lower panel). This example is MATLAB window
4, so corresponded to the fourth-most important analysis frequency for this tile.



The important aspect of tile phase maps like Figure 4 are that the observed and
modeled phase maps looks alike. This means that the MATLAB fit to a progressive
plane wave has been successful.

This debug option also lists the frequency dependent results for each tile, for
example as shown in Figure 5, a case for which the dominant 4 frequencies were
saved (nKeep = 4 in the settings file).

frequency 1 of 4, normalized lambda 44.4
frequency 2 of 4, normalized lambda 39.3
frequency 3 of 4, normalized lambda 35.
frequency 4 of 4, normalized lambda 31.3

o

fDependent =

£B: [0.0956 0.1156 0.0756 0.1756]
k: [0.1132 0.1362 0.0918 0.2145]
a: [0.0057 0.0435 0.0405 -0.0015]
dof: [16.3925 18.9482 16.8483 17.5866]
skill: [0.9522 0.9350 0.9020 0.8782]
laml: [44.3637 39.2987 34.9696 31.2874]
KErr: [0.0549 0.0545 0.0549 0.0523]
aErr: [0.1827 0.1597 0.2297 0.0960]
hTemp: [2.9704 3.0573 2.7807 3.0715]
hTempErr: [2.9153 2.5250 3.3081 1.6877]

Figure 5. Text listing of frequency-dependent results for an example tile, explained
in the text.

The first four lines list the normalized eigenvalue for each of the four dominant
frequencies. These must exceed lam1 from the setting file to be retained with large
values like these indicating that the first EOF has a lot more energy than expected by
chance. The following lines show all of the f-Dependent results from the bathy
structure. Itis often useful to look at the frequencies since these should be
comparable to those from a wave gage; the wave angle, a, since these should make
sense; the skill since this expresses the quality of the fit; and the individual
estimates of depth, hTemp, which should be reasonable and (ideally) consistent.

7.2. Phases 1 and 2 Debugging

The MATLAB routine ‘examineSingleBathyResult’ is a simple way to look at the main
results from phases 1 and 2 AFTER computation of the bathy structure. This routine
is a bit simpler to use since you need only supply the bathy structure as input. Itis
useful to determine if results look sensible, but it doesn’t have the base level
diagnostic capabilities like time stacks and phase maps of the above debugging
routine.

Unlike the previous routine, examineSingleBathyResult is sorted by frequencies
from the lowest possible value of fB to the highest. For each frequency, the standard
products of wavenumber, wave angle, hTemp and phase 2 depth are mapped along



with their errors. Because nKeep is usually much smaller than the list of possible
frequency values listed in the settings file, there will usually be maps or regions of
maps that are filled with nans, indicating that no values were returned for that
frequency for that location. However, there are real advantages in seeing some
variables like wavenumber and wave angle sorted by frequency rather than by
importance in the analysis. For interpretation, the last subplot (lower right corner)
shows maps of the order of importance of the plotted frequency (so a value of 2 for a
map location means the displayed frequency was the second-most important at that
location). Cycling through the frequencies is a good way to get a feel for which
frequencies are contributing to the final depth estimate, h, for any data run.

Note that the top center (untitled) plot is the wave angle, a.

The routine plotBathyCollectSDS provides a nicely formatted display of the phase 2
bathymetry and error.

7.3. Phase 3 Kalman Debugging.

Kalman filtering results can be examined for Argus using the routine
showHourlyKalmanResults and specifying the station and the beginning and end
times to examine. This routine calls the m-file plotBathyKalmanStep to display each
ongoing result in a series of sequential bathy estimates. For non-Argus systems, you
should call this function from within a wrapper m-file that is consistent with your
system.

For each bathy file within the sequence, this routine plots the prior running average
bathymetry, the current estimate (from fCombined in this bathy record), the
updated running average, as well as errors on the prior and current estimates. The
last panel is the Kalman gain. Cycling through a series of results lets you examine
how the Kalman filter ingests good and bad data and how the final averaged results
evolve. Itis instructive to watch the Kalman gain since these numbers should
normally be small once the filter has settled down (ingested a few days worth of
hourly data).

Appendix A: Example Pixel Collection m-file

The following is an example m-file used to create a cBathy array for Agate Beach,
Oregon, in 2011. It works only for Argus systems but can be used as an illustration
or template for other systems. The cBathy-specific part of the code is the five lines
follow the comment ‘% create a large matrix coverage for cBathy’ and simply creates
a matrix of pixel instruments over the sampling area with x and y spacing of 10 and
20 m, respectively.

% pixel array design for Agate Beach
%

% Designed 10/05/11

% Holman



clear all;

DBConnect;

global DBIsOkForAutoGeoms
DBIsOkForAutoGeoms ="noautook’

PIXForget;
PIXSetStation('argus00');

% create a large matrix coverage for cBathy

x1=150; x2 = 2500; dx = 10.0;

y1=-1300; y2 = 2000; dy = 20;

tide=0;

iid1=PIXCreatelnstrument('mBW','matrix’, PIXFixedZ+PIXDeBayerStack);
PIXAddMatrix(iid1,x1, y1, x2, y2, tide, dx, dy);

% Now schedule the collection.
epoch=matlab2Epoch(now);

cams = [0 1 3];

idBWPack = PIXCreatePackage(demoTest, [iid1]);
r=PIXBuildCollect(idBWPack,epoch,tide,cams);
PIXScheduleCollectlll(cams,2048,2,r);



