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[1] A three-part algorithm is described and tested to provide robust bathymetry maps based
solely on long time series observations of surface wave motions. The first phase consists of
frequency-dependent characterization of the wave field in which dominant frequencies are
estimated by Fourier transform while corresponding wave numbers are derived from spatial
gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial
resolution. Coherent spatial structures at each frequency are extracted by frequency-
dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit
weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in
phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new
estimates of variable quality with prior estimates. Objective confidence intervals are
returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and
root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the
offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline
where analysis tiles mix information from waves, swash and static dry sand. Performance
was excellent for small waves but degraded somewhat with increasing wave height. Sand
bars and their small-scale alongshore variability were well resolved. A single ground truth
survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over
a region that extended several kilometers from the camera and reached depths of 14 m.
Vector wave number estimates can also be incorporated into data assimilation models of
nearshore dynamics.

Citation: Holman, R., N. Plant, and T. Holland (2013), cBathy: A robust algorithm for estimating nearshore bathymetry, J. Geophys.
Res. Oceans, 118, doi:10.1002/jgrc.20199.

1. Introduction

[2] Bathymetry is probably the most critical variable for
understanding and modeling the dynamics and variability
of the nearshore. Coastal Zone Management decisions are
usually based around understanding sediment budgets and
the location and health of the beach sand volumes, so
require bathymetry data directly [Davidson et al., 2007].
Prediction of nearshore ocean wave, current and
morphologic conditions using a series of increasingly
mature numerical models can only succeed if provided
with an up-to-date, accurate bottom boundary condition
tied to the current bathymetry. Such data are only rarely
available.

[3] This need has spurred extensive research into meth-
ods for cheap and, for military purposes, clandestine meas-

urements of nearshore bathymetry. Some of these methods
are in situ such as traditional leveling, the use of bottom-
contacting vehicles such as the Coastal Research Amphibi-
ous Buggy (CRAB) [Birkemeier and Mason, 1984] or
global positioning system (GPS)-equipped jet-ski systems
with attached fathometers [Dugan et al., 2001a]. These
methods are accurate, but manpower intensive and expen-
sive. Others are based on remote-sensing methods that
exploit various depth signatures. For clear water where the
bottom is visible, multi- or hyperspectral sensors show
color variations that are correlated to depth in invertible
ways [Mobley et al., 2005; Lyzenga et al., 2006] yielding
approximate bathymetries from satellite or airborne data.
LIDAR has become a powerful and popular tool for air-
borne sensing of clear waters, providing accurate, albeit ex-
pensive, measurements for extensive areas each time an
overflight is carried out [Sallenger et al., 2003; Irish and
Lillycrop, 1999].

[4] For many areas of the world, the bottom is not visible
either due to turbidity or bubbles in the surf zone so the
above methods do not work and depth must be estimated
through the use of ocean surface observables. van Donge-
ren et al. [2008] developed an assimilative methodology
for the estimation of bathymetry based on a number of pos-
sible input data streams. Most commonly it exploits the dis-
sipation patterns observed in Argus time exposure images
[Lippmann and Holman, 1989] by finding the model
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dissipation over a series of test bathymetries that best
match Argus observations. The method is complex and
requires a quality control procedure for input images but
produces good results in the vicinity of the surf zone where
dissipation dominates. However, the algorithm is also capa-
ble of ingesting estimates of wave celerity and shoreline to-
pography [Plant and Holman, 1997] collected from either
optical or radar remote sensors.

[5] Alternately, a number of authors have tested methods
based just on the relationship of wave celerity, c ¼ �=k, to
depth, mathematically described by the dispersion
relationship

�2 ¼ gk tanh khð Þ; ð1Þ

where � is the radial frequency (2� divided by the period,
T), k the radial wave number (2� divided by the wave-
length, L), g the acceleration due to gravity, h the depth and
currents and finite amplitude effects have been neglected.
This idea was first investigated around World War II when
sequences of air photos of enemy-held beaches were man-
ually analyzed to determine wavelengths, wave periods and
inferred depths [Williams, 1947]. However, analysis was te-
dious and expensive and the results poor due to the nonmo-
nochromatic nature of most seas, the difficulty of
accurately geolocating images, the sensitivity of the disper-
sion relationship and the noisy nature of optical images of
ocean waves (discussed later).

[6] Recent decades have seen a renewed interest in this
approach due to the importance of bathymetry data to
nearshore modeling and improvements in remote sensing
data availability and signal processing methods to extract
information from noisy data. Stockdon and Holman
[2000] used frequency-domain empirical orthogonal func-
tion (EOF) analysis to estimate wave number as the gradi-
ent of the phase of the first EOF for a dominant
frequency. The input time series data were taken from 1-
D cross-shore arrays of pixels from Argus cameras [Hol-
man and Stanley, 2007] with corrections due to non-nor-
mal incidence based on directional estimates from small
alongshore lag arrays. Results were reasonable [bias and
root-mean-square (RMS) error of 0.35 and 0.91 m, respec-
tively] although the signal processing and systematic use
of data were less rigorous than in the present work. Pio-
trowski and Dugan [2002] and Dugan [2001b] more for-
mally extended the analysis to both horizontal dimensions
using data from a specially adapted airborne camera sys-
tem (Airborne Remote Optical Spotlight System
(AROSS)) to measure optical signals over a large near-
shore region while Trizna and others tried similar
approaches using X-band radar [e.g., Trizna, 2001].
Results were good (RMS errors were 5–10% of local
depth) and included the capability to simultaneously mea-
sure currents from their high-frequency Doppler shift. But
the method was based on a spatial Fourier transforms of
the observed image data so spatial resolution was limited
by the requirement of 256 m analysis tiles. Plant et al.
[2008] developed and tested two new methods for the
robust estimation of ocean wave number from which
bathymetry could be derived. Like Stockdon and Holman
[2000], the methods were only one-dimensional (1-D, usu-
ally cross shore). The first approach was posed as a tomo-

graphic problem based on the travel time between all
possible pair of pixels in a 1-D transect. This approach
was shown to provide high-spatial resolution, a factor of
10 better than Fourier approaches, and could resolve bath-
ymetric features with horizontal scales that are at least 10
times the local depth. Objective error predictions were
also computed. A second approach found wave numbers
based on spatial gradients of Fourier phase at a set of fre-
quencies, the same basis as is used in this paper but previ-
ously only in 1-D. Senet et al. [2008] suggested an
alternate algorithm based on complex 3-D fast Fourier
transforms (FFTs) allows for spatial inhomogeneity, so
permits better resolution than standard FFT methods.

[7] The goal of this paper is to extend previous work with
an algorithm that is fully two-dimensional but retains the
high-resolution capabilities of non-Fourier spatial methods.
The method must be robust to noise and unanticipated signals
like sun glare, passing clouds and rain spots on lenses, and
must return confidence estimates that can be used in down-
stream products such as operational nearshore prediction
models. However, in contrast to van Dongeren et al. [2008],
this algorithm will not depend on these models. A key aspect
of this model that will distinguish it from previous work is
the implementation of a Kalman filter formalism (section
2.3) to allow statistically robust integration of new estimates
of variable quality with a prior running average. This compo-
nent requires not only the development of good confidence
intervals for new estimates, but also a realistic ‘‘process
error’’ function to represent the slow degradation of prior
estimates due to ongoing wave action and sediment transport.

[8] The next section describes the nature of the signal
processing problems we must address and the details of the
algorithm. This will be followed by a description of exten-
sive tests against high-quality survey data from Duck,
North Carolina, USA and one survey from Agate Beach,
Oregon, USA. This will be followed by discussion and con-
clusions. The algorithm has been called cBathy due to the
primary role of wave celerity, c, in the estimation of ba-
thymetry. But estimates of wave number and wave angle
are also returned for a set of desired frequencies.

2. The cBathy Algorithm

[9] The problem of estimating ocean wave properties from
optical signals can be surprisingly challenging. Walker
[1994] showed that for waves outside the surf zone viewed at
the typical low-graze angles of coastal cameras, the primary
source of light from the ocean comes from specular reflection
of skylight by the sea surface and the primary source of wave
contrast is variations in sea surface slope and the associated
slope dependence of the optical reflection coefficient. Since
sea surface slope depends on the wave amplitude, a, times
the wave number, k, this mechanism is dominated by high
wave number (short wavelength) waves, or ocean chop. This
is apparent when viewing any ocean scene. Human observers
instinctively filter the observed wave patterns to see the lon-
ger, coherent incident wave pattern while ignoring the short
wave clutter, but a computer algorithm must understand and
properly deal with these sources of noise. In the following
algorithm, this will be done through both frequency domain
methods (temporal Fourier transforms) and through coher-
ence and EOF-based filtering.
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[10] While the disadvantage of optical data is the high-
noise level, the advantage is the huge volumes of data that
are available at very low cost. A single camera can deliver
around 35 MB per second, a data rate well beyond what is
needed for wave characterization, and one that requires
extensive data reduction. The cBathy analysis described
below for the case of Duck, NC, will strive to estimate ba-
thymetry over a 420 by 1000 m region with a spatial resolu-
tion of 10 by 25 m in the cross shore (x) and alongshore (y)
respectively for a total of 1763 points. The analysis will be
based on optical intensity time series data [Holman and
Stanley, 2007] that are collected at approximately 8600
locations (5 by 10 m spacing) over the same region, a
reduction by decimation to 0.14% of the available pixels
from the five Argus cameras that span this site. Temporal
sampling is done at 2 Hz, a further reduction by a factor of
15 over typical 30 Hz video rates, for record lengths
of 1024 s, each hour. Even with this reduction of 4 orders
of magnitude in available data usage, 17.6 million intensity
samples are collected for each data run, so that there are
approximately 10,000 degrees of freedom for every indi-
vidual bathymetry estimate. Thus, robust signal processing
opportunities are available.

[11] Figure 1 shows the typical pixel sampling array
described above (decimated by 2 to reduce clutter) with the

blue dots each corresponding to the locations, xp; yp

� �
, of

available 17 min pixel time series data. The analysis is car-
ried out sequentially at a series of user-selected analysis
points, [xm; ym], one of which is indicated by the red aster-
isk, and is based on data from the immediately surrounding
pixels (green points) within a user-specified range, Lx; Ly.
Within each such tile, the goal is to estimate the wave num-
ber, k, for each of a set of candidate frequencies, fb; that
span the incident wave band (taken here as periods between
4 and 18 s). For each fb; kð Þ pair, a depth, ~h xm; ymð Þ can
then be estimated using equation (1), or a single depth,
ĥ xm; ymð Þ, can be determined that best fits all frequencies.
Estimates may be poor or impossible at times due to
weather, sun glare or calm seas, so estimates from hourly
data collections are objectively averaged to yield a stable
running average depth, hðxm; ymÞ. Thus, the final cBathy
analysis at each point consists of three stages:

(1) Frequency-dependent analyses of fb; k; � and ~h,
where �, the wave angle, is a collateral product,

(2) Frequency-independent estimation of the best single
depth, ĥ,

(3) Estimation of the running-averaged depth, h.

[12] Each stage is now discussed.

2.1. Phase 1: Frequency-Dependent Analysis

[13] The first step is to Fourier transform the optical
intensity time series at each pixel, I xp; yp

� �
, such that

G xp; yp; f
� �

¼ FT I xp; yp; t
� �� �

. Because our interest is in
modeling wave phase and neglecting spatial variations in
magnitude, the Fourier coefficients are then normalized,
Ĝ ¼ G=jGj. The full data set is then subsampled to a local
data tile in the region xm6Lx; ym6Ly

� �
(example green

region in Figure 1) and the cross-spectral matrix computed
between all possible pixel pairs for each of the desired fre-
quency bands,

Cij fð Þ ¼ hĜ xpi; ypi; f
� ��

Ĝ xpj; ypj; f
� �

i; ð2Þ

where superscript � indicates the complex conjugate and
the expected value is averaged across each frequency band.

[14] For complex natural seas, the cross-spectral matrix
can mix the effects of multiple wave trains from different
directions. To extract only coherent motions from this mix,
the dominant (complex) eigenvector, v xp; yp; f

� �
, and asso-

ciated eigenvalue, �, are extracted from C. We define the
optimum wave number, k, and wave direction, �, as those
values that yield the best match between observed and
modeled spatial phase structure of v based on a forward
model

v0 ¼ tan �1 imag vð Þ
real vð Þ

� �
¼ exp i kcos �ð Þxp þ ksin �ð Þyp þ �

� �� �
;

ð3Þ

where the search is accomplished using Matlab routines
based on the Levenberg-Marquardt algorithm. The scalar
phase angle, �, is of no geophysical value in the subsequent
analysis and simply provides an appropriate phase shift to
match the observed spatial structure of v0.

Figure 1. Example pixel array used for cBathy analysis.
The 8600 pixels (half shown) span a 420 by 1000 m region
with 5 by 10 m resolution. For each analysis point (exam-
ple show by red asterisk), depth is estimated based on
cross-spectral phase within a nearby region (green pixels).
The background image is a rectified snapshot that merges
views from the five available cameras.
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[15] The eigenvector, v, will usually have a spatially
variable magnitude expressed by jv xp; yp

� �
j that can serve

as an appropriate weighting for the search cost function. In
addition, the need to localize the cost function to the vicin-
ity of the analysis point, xm; ym½ � within each tile was
accomplished by multiplying the cost function by an addi-

tional Hanning filter weighting, G
ðxp�xmÞ

Lx
;
ðyp�ymÞ

Ly

� 	
, where G

has magnitude 0.5 at argument 0.5 and goes to zero at argu-
ment 1.0. Thus the nonlinear search for optimum wave
number and wave angle at each point is accomplished by
minimizing the error between predicted and observed val-
ues of v0 xp; yp

� �
w xp; yp

� �
, where the weighting function is

given by w xp; yp

� �
¼ jv xp; yp

� �
jG xp; yp

� �
.

[16] From the derived wave numbers for each frequency,
an equivalent depth, ~h, is estimated using equation (1). In
addition, for each result, 95% confidence intervals are com-
puted for the depth, wave number and wave angle, and the
skill of the fit, s, the number of degrees of freedom (a func-
tion of w) and the normalized eigenvalue, �̂, (eigenvalue

divided by the average eigenvalue) are recorded. �̂ is used
as both part of the weighting for the different frequencies
in the phase 2 depth estimation and in a quality control role
to determine if an analysis result exceeds a minimum ac-
ceptable signal level.

[17] The appropriate spatial scale for smoothing, Lx; Ly,
will depend on cross-shore distance, x. Close to the shore,
short scales are common so the tile size and Hanning filter
size can be small, whereas natural length scales of variabil-
ity offshore will be larger so more smoothing is allowed.
To accommodate this spatial variability, Lx and Ly are line-
arly increased between the inner and outer limits of the
analysis domain by a user-selected factor, �, so that the
maximum stretch at the outer domain boundary is �Lx and
�Ly. This increase in tile size will result in the inclusion of
an increasing number of pixel locations and an associated
worsening of run-time speeds since the number of calcula-
tions vary as the number of pixels squared. To maintain
run-time speed, the number of pixels per tile was limited to
a maximum number with the excess removed by decima-
tion. Appropriate values for the maximum number of
pixels per tile are based on the requirement to sample the
phase map, v xp; yp

� �
, well enough to estimate its spatial

gradient.
[18] Phase 1 analysis can provide results for any of

the candidate frequencies, f. However, ocean waves will
typically span only a subset of the possible frequencies
on any day, with other frequencies providing no useful
signal. To allow bandwidth while minimizing nonuseful
computation, cBathy only considers the frequency bands
with the largest total coherence (

P
jCj) over the tile,

retaining a user-defined number of bands (commonly
four).

[19] To avoid returning aphysical values, several quality
control checks are implemented. Estimates for which the
skill, s, is less than a tolerance (usually taken as 0.5) or for
which the first EOF does not return a high fraction of the
variance (�̂ < 10) are not accepted. Similarly, returned
phase 1 depths, ~h, greater than a user-specified maximum
(15 m) or less than a minimum depth (0.25 m) are not
accepted. Since cBathy estimates depth, not bathymetry,

tidal elevations must be subtracted from estimates to yield
depths relative to a fixed tidal datum.

2.2. Phase 2: Frequency-Independent Depth
Estimation

[20] Phase 1 algorithms provide a suite of frequency-de-
pendent wave number and depth estimates, each with confi-
dence intervals. The goal of Phase 2 is to objectively
combine these to yield a single depth estimate at each anal-
ysis point along with error information. One method to do
this would be simply average the phase 1 depths, but since
the dispersion relationship is nonlinear, this would intro-
duce bias (thus phase 1 depths are only used for diagnostic
and quality control purposes). Instead, we will estimate the
single depth value that provides the best weighted fit of the
dispersion relationship (1) to all frequency-wave number
information. Since bathymetry is expected to vary with a
typical scale of Lx, this fit can include information from ad-
jacent analysis locations in a way that is weighted by dis-
tance from the estimation location through a Hanning filter,
G. The final depth estimate is the value that yields the best
fit between modeled and observed wave numbers, i.e.,
between phase 1 observations of k and those predicted by
equation (1) (solved iteratively) for each frequency and
candidate depths in the nonlinear search. A weighted fit is
used (i.e., the fit variable is kw2 where w2 is the phase 2
weighting function). Solution again uses a Matlab Leven-
berg-Marquardt algorithm and returns both best fit depth
and 95% confidence intervals.

[21] The weighting function, w2, could depend on the
distance through G, the skill of each fit, s, and the impor-
tance of the first EOF, expressed by �̂. We chose to use the
product of all three, so w2 ¼ Gs�̂. Because low-skill and
low-eigenvalue fits have already been culled, this filtering
is most dependent on distance, then eigenvalue magnitude,
then skill.

[22] Phase 2 depths, like those of phase 1, must be tide-
corrected to yield data corrected to tidal datum.

2.3. Phase 3: Running-Average Depth Estimation

[23] Any long-term analysis must be robust to a variety
of data failures including temporary loss of view (camera
failure, fog or obscuring raindrops) or low signal to noise
(an absence of waves or signal saturation due to sun glare).
These problems can cause the loss of parts or all of a single
cBathy bathymetry. Similarly, the outer edge of the surf
zone is known to be a difficult domain since modulating
wave amplitudes can be seen alternately as breaking or
nonbreaking, resulting in signals with low-spatial coher-
ence. These failures are usually limited in time or space
and gaps can be filled with better estimates at different
times or stages of the tide. The goal of phase 3 analysis is
to compute a running average that smoothes individual
(hourly) estimates in a way that objectively weights the
confidence in the new estimate with that of the prior run-
ning average. This is a Kalman filtering problem and the
method follows simple Kalman filtering theory [Kalman,
1960].

[24] In contrast to previous phases, the Kalman filtering
is carried out only in the time domain. Thus, at any loca-
tion, if our current depth estimate and standard deviation
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error are ĥ and �̂ and our prior (running average) estimates
were h and �, then the Kalman filter updates our prior as

hk ¼ hk�1 þ K ĥk � hk�1

� 	
ð4Þ

[25] Subscripts k and k�1 represent an adjacent pair of
sampling times. Thus, the running average estimate is
updated from time k�1 to time k by the innovation (new in-
formation, parenthesized component) times a Kalman gain,
K, that compares the believability of the new estimate with
that of the prior. If K¼ 0, the new estimate makes no con-
tribution whereas if K¼ 1, the prior estimate is ignored.
The Kalman gain is found by

Kk ¼
P�k

P�k þ R
; ð5Þ

where P and R are the error variance of the running average
and of the current estimate, computed as �2 and �̂2, respec-
tively. The superscript on the prior error variance (�) indi-
cates that it is an estimate of the variance of the estimated
depth at time k, but prior to adding in the new information.
This estimate is given by the prior variance plus an
increase, Q, that has occurred between estimates k�1 and
k, presumably due to unmodeled sediment transport proc-
esses. Thus,

P�k ¼ Pk�1 þ Q�t; ð6Þ

where �t is the time interval in days between estimates.
An appropriate form for this process error, Q, is discussed
below. After the k-th averaging step has taken place (equa-
tion (4)), the estimated error variance is updated depending
on the Kalman gain (equation (5)) as

Pk ¼ 1� Kkð ÞP�k : ð7Þ

[26] The process error, Q, represents unmodeled natural
variability, the depth changes that occur under the action of
waves and currents. While van Dongeren et al. [2008] sug-
gested that Q must grow with elapsed time, there is little
guidance in the literature for the form of Q, including
potential dependencies on wave height and cross-shore
location. Nor is there much bathymetry data available with
sufficient temporal and spatial sampling to estimate daily
variability under a range of wave conditions.

[27] The best set of natural data for this task is the set of
36 almost daily bathymetric surveys collected over 39 days
(22 September 1997–30 October 1997) during the Sandy-
Duck field experiment held at Duck, NC, USA (http://
www.frf.usace.army.mil/SandyDuck/SandyDuck.stm). Sur-
veys were carried out using the CRAB [Birkemeier and
Mason, 1984] equipped with Real Time Kinematic (RTK)-
GPS, yielding a vertical accuracy of approximately 5 cm
and an alongshore density of cross-shore transects of 25 m.
The three nonsurvey days were break days when conditions
were calm (Hmo< 0.4 m) and were interpolated. Raw sur-
vey data were loess-interpolated to a regular grid spanning
500 by 1000 m (cross-shore by longshore) with a sampling

spacing of 10 by 25 m, respectively. Profile variability was
estimated from the mean-square bathymetric deviation

Q x; tið Þ ¼ h Z x; y; tið Þ � Z x; y; ti�1ð Þ½ �2i; ð8Þ

in units of m2=day . Averaging, indicated by brace brackets,
is over the alongshore.

[28] Figure 2 shows the resulting measured process error,
Q x; tð Þ, along with the wave height for the entire Sandy-
Duck experiment. The peak variability (lower plot) is
located seaward of the shoreline (typically at x¼ 100 m), is
associated with variations of a sand bar centered near
x¼ 150 m and appears to be correlated to wave height
(upper plot). Variability tapers to both seaward and land-
ward in a roughly Gaussian form. Thus we modeled Q in
the following form

Q x;Hmoð Þ ¼ CQHn
moexp � x� x0ð Þ

�x


 �2
( )

: ð9Þ

[29] For bathymetries collected during SandyDuck, vari-
ability was limited to a fairly narrow region centered on
x0 ¼ 150 m. But to accommodate known interannual vari-
ability in bar position [Lippmann et al., 1993], spread of
the exponential was chosen to be much larger, �x ¼ 100.
The statistics of both linear and quadratic wave height
dependencies were found to be comparable, so we chose
n¼ 2 to be more consistent with sediment transport
dependencies. The best fit value of CQ was 0.067/day, cho-
sen to match the cross-shore maximum in variability on
each day.

3. Ground-Truth Tests

[30] The cBathy algorithm was tested at two locations.
Extensive tests were carried out at the field research facility
(FRF) at Duck, NC, USA using 16 accurate surveys col-
lected from 2009 to 2011. The algorithm was also tested
against a single 2011 survey at Agate Beach, Oregon, USA,
a very different environment. In all cases, optical data col-
lection was run hourly for an extensive period but for Duck
cases, cBathy analysis was carried out from 3 days prior
through the day of the survey (i.e., Kalman smoothing was
initialized 3 days prior to the survey). Kalman seeding for
Agate Beach is discussed below.

3.1. Test Results From Duck, NC

[31] The pixel array at Duck is illustrated in Figure 1 and
spans a 420 by 1000 m region (cross shore by alongshore)
with 5 by 10 m spacing. The fact that the resulting 8600
pixels are spread across five cameras is not a problem since
magnitude differences associated with different camera
gains are normalized out in the analysis (section 2.1). At
each pixel, time series are collected hourly for 1024 s at
2 Hz. Values of analysis and time series collection parame-
ters are shown in Table 1. The role of sampling array
design, (selecting an appropriate set of analysis locations,
[xm; ym]), in resolving bathymetric features at different
scales and in modeling the associated hydrodynamics is
described in Plant et al. [2009]. Values for Lx and Ly deter-
mine the filter attenuation cutoff of the method (morpho-
logical features shorter than twice these scales will be

HOLMAN ET AL.: THE CBATHY ALGORITHM

5

http://www.frf.usace.army.mil/SandyDuck/SandyDuck.stm
http://www.frf.usace.army.mil/SandyDuck/SandyDuck.stm


attenuated in amplitude by half) and are partially deter-
mined by the need to have enough pixel locations per anal-
ysis tile (around 50) to constrain the least square solution in
phase 1. Plant et al. [2008] note that features shorter than
10 times the water depth cannot be resolved by these meth-
ods, placing a constraint on the shortest supportable length
scales for this method.

[32] Wave height data used in the Kalman filter were
derived from the 8 m array (FRF instrument 3111) while

tidal elevation data were obtained from a NOAA tide gage
located at the end of the FRF pier.

[33] Figure 3 shows a good result (fourth lowest RMS
error of the 16 tested). The left plot, a CRAB survey, is
the best available ground truth [Birkemeier and Mason,
1984]. CRAB data were collected along cross-shore trans-
ects spaced �25 m in the alongshore then were interpo-
lated to analysis locations, xm; ym½ �. The middle plot shows
the cBathy Kalman filter result, h xm; ymð Þ, that most
closely corresponded to the middle of the CRAB survey
(assumed to be noon, by default). The right plot shows the
difference (survey minus cBathy) between the two esti-
mates. The central region (y � 500) is an area where a
research pier crosses the beach, blocking camera views,
and is a region of known bathymetric anomaly due to
scour processes [Miller et al., 1983]. Thus, results from
locations closer than 100 m from the pier (marked by
black line on the Figure) are shown but will be omitted
from further statistical analysis. Similarly, subaerial
regions for which no estimates are returned or data for
which the estimated error exceeded 0.5 m (near the shore-
line) are omitted from the following statistical analyses.

[34] The cBathy estimates are excellent. Most errors are
less that 0.5 m (right hand plot). The bias and RMS error
of the cBathy estimate, computed over the entire (nonpier)
area from shoreline to 500 m offshore are 0.28 and 0.44 m,
respectively. A sand bar centered at x¼ 200 m is surpris-
ingly well rendered including trough anomalies at y¼ 300,
500, and 1000 m alongshore and an apparent rip channel
cuts through the sand bar at y¼ 900 m. An outer bar is
visible, especially to the south.

Figure 2. Process error, Q, found from bathymetric variability during the Sandy Duck field experi-
ment, 1997 (bottom plot). The upper plot shows the corresponding offshore wave height.

Table 1. Parameters Involved in the Collection and Analysis of
cBathy Data at Duck, NC

�xp 5 m Pixel cross-shore spacing

�yp 10 m Pixel alongshore spacing

Npixels 8600 Total number of pixel time series

�t 0.5 s Time series sampling interval

� 1024 s Pixel time series record length

�xm 10 m Cross-shore analysis point spacing

�ym 25 m Alongshore analysis point spacing

Lx 20 m Analysis smoothing scale in x
Ly 50 m Analysis smoothing scale in y
� 2 Smoothing scale expansion at outer boundary
hmin 0.25 m Minimum acceptable depth
hmax 15 Maximum acceptable depth
smin 0.5 Minimum acceptable skill, phase 1

�̂min
10 Minimum acceptable normalized

eigenvalue, phase 1

f 1
18 : 1

50 : 0:25
� �

Analysis frequency bins

Nkeep 4 Number of frequency bins to retain
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[35] Figure 4 shows two example transects for this sur-
vey, from y¼ 200 through the double-barred region and
from y¼ 850 through the complex trough and rip channel.
For both transects cBathy estimates closely approximate
ground truth, although the cBathy estimates for the steep
foreshore are biased deep. Bar positions and shape are quite
accurate.

[36] Table 2 shows statistics for each of the sixteen
CRAB-cBathy comparisons, again computed over the
entire 1000 m domain (excluding the pier region) and from

the shoreline to 500 m. �z80 and �z95 correspond to the
80th and 95th percentile error exceedence values for each
survey. 	 is the percent data return from all Phase 2 data
runs within each 4 day analysis (the number of valid esti-
mates compared to the requested array size). Wave condi-
tions ranged widely (although actual CRAB survey days
are almost always done on low-energy days), and the analy-
ses included many foggy and rainy days (when rain drops
obscured the view). Over the entire suite of surveys, the
results have only a small bias deep (mean bias is 0.19 m)

Figure 3. Example cBathy bathymetry product (center plot) compared to ground truth (left plot). The
right plot shows the cBathy error. All depths are in meters.

Figure 4. Example cross-shore transects from y¼ 200 (upper) and 850 (lower) in Figure 3.
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and have an RMS error that averages 0.51 m. 80% of esti-
mates are correct to within 0.64 m and 95% within 1.04 m,
averaged over the entire domain.

[37] cBathy performance was found to vary with depth.
Figure 5 (dashed line) shows the mean bias and RMS error
for the entire data set, binned by depth. Both bias and RMS

error are largest in the shallowest depth bin of 0–1 m and
rapidly improve in intermediate depths before worsening in
deep water. The shallow water bias, an overestimation of
true depth, is consistent with the expected finite amplitude
errors in the dispersion relationship but may also be related
to the large fractional depth variations (including curva-
ture) across the data analysis tiles close to the beach. In
fact, it was determined that this bias resulted from tiles that
spanned the shoreline and mixed unuseful subaerial and ac-
ceptable subaqueous signals so yielded tile-averaged statis-
tics that are biased deep (see also Figure 4). Performance
statistics were repeated excluding the shoreline region
(defined as anything landward of the location of zero
CRAB survey depth plus 20 m, the analysis window width)
and are shown by the solid lines. Bias is now less that 0.2 m
and RMS errors are less than 0.4 for depths less than 4 m.
Recalculation of the bulk statistics shown in (Table 2)
revealed only small changes to performance, reflecting the
small fraction of depth estimates that lie near the shoreline.
The main consequence was a 3% reduction in the average
�z95, a statistic affected by the largest errors.

[38] Errors in deep water were found to be dominated by
data from a single offshore-looking camera (C1, looking
directly offshore). Recalculation of statistics after removal
of C1 pixels (only 15% of the total) improved the average
cBathy performance by almost a factor of two. Over all
depths, the mean bias was reduced from 0.19 to 0.10 m and
RMS error reduced from 0.51 to 0.34 m. While C1 has the
lowest resolution and lens quality of the five cameras, we

Table 2. cBathy Performance Statistics for the 16 Survey Com-
parisons as well as the Dataset Mean (bottom row).

Date
Bias
(m)

RMS
Error (m) �z80(m) �z95(m) 	 (percent)

18 Aug 2009 0.53 0.53 0.67 1.12 98
16 Sep 2009 0.06 0.53 0.63 1.05 84
21 Oct 2009 0.08 0.50 0.60 1.05 72
10 Dec 2009 �0.09 0.45 0.59 0.96 75
14 Jan 2010 0.08 0.46 0.57 0.96 83
22 Feb 2010 0.23 0.52 0.68 1.04 86
5 Apr 2010 0.11 0.57 0.70 1.13 83
16 Apr 2010 0.18 0.54 0.66 1.14 88
4 Jun 2010 0.14 0.66 0.86 1.46 89
28 Jul 2010 0.20 0.71 0.71 1.64 92
15 Sep 2010 0.23 0.44 0.58 0.92 78
19 Oct 2010 0.28 0.44 0.58 0.81 83
22 Nov 2010 0.31 0.43 0.59 0.82 91
7 Feb 2011 0.32 0.43 0.57 0.84 76
18 Mar 2011 0.25 0.41 0.53 0.85 79
2 May 2011 0.26 0.52 0.71 1.04 94
Mean 0.19 0.51 0.64 1.04 84

Figure 5. Depth dependence of cBathy error expressed as bias (upper plot) and RMS (lower plot).
Dashed line is for all estimates while the solid line excludes depth estimates from shoreline tiles that
included both data from wet and dry pixels. Error bars indicated standard deviation over the 16 test
cases.
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know of no reason why this should yield the observed
errors.

[39] The algorithm resolved surprising details in the
inner bar and trough bathymetry, for instance the trough
depth anomalies at y¼ 350 and 500 and the apparent rip
channel at y¼ 900 (Figure 3). Correlation coefficients were
computed between surveyed and estimated bathymetry for
the region of the inner sand bar, defined as the region
from 20 m seaward of the shoreline to x¼ 250 m. The
average correlation was 0.85 with a standard deviation of
0.09.

[40] To test whether cBathy performance depends on
offshore wave conditions, mean statistics were computed
for each of the 64 days analyzed (16 surveys, each analyzed
for the survey date plus 3 prior days). Daily means of wave
height, Hmo, wave period, cBathy bias and cBathy RMS
error were computed for each day and the wave height de-
pendence plotted in Figure 6. Bias varies from slightly pos-
itive (cBathy too shallow) under small waves to negative
(cBathy too deep) for large waves, perhaps consistent with
finite amplitude dispersion effects. RMS error is smallest
under exceptionally small waves (sometimes barely visible)
and deteriorates during storms (assuming that the errors
don’t simply represent true bathymetric changes prior to
the final survey). No bulk dependence was found on wave
period (not shown). Similarly, a careful search for an
expected kh dependence showed no trends, presumably
because the maximum h/L values for the analyzed depth
bins didn’t exceed 0.06 (assuming daily-averaged wave pe-
riod and the depth range of 0 to 6 m), well away from the
deep water cutoff. Setup has been neglected in this analysis

but could represent an O (10 cm) correction in the shallow-
est depths but an insignificant contribution further offshore.

3.2. Kalman Filter Performance

[41] The phase 3 Kalman filtering is an important step
for producing a robust product. Figure 7 shows the same
cbathy Kalman-smoothed result, h, as Figure 3 (left plot).
However, the middle plot shows the hourly result, ĥ, taken
at 7 am on the morning of the survey. Large gaps in the sur-
vey to the south (bottom of plot) result from morning sun
glare and very low-wave conditions (Hmo was 0.22 m at the
time). However, error estimates provide a good delineation
of areas with poor results and help steer the Kalman filter-
ing process. Errors and gaps such as are shown here are
also associated with rain and fog and are not uncommon.

[42] The hourly bathymetry product in Figure 7 failed to
return values for 36% of the potential pixels (successful
coverage, 	 ¼ 0:64). Values less than 1.0 are common for a
variety of reasons including fog and rain. Figure 8 shows
the histogram of percent successful returns for the 671
hourly collections being examined. While most collections
had good returns, 20% returned less than 80% coverage
and 1.5% returned no valid points at all. In addition, a sig-
nificant proportion of results have high-predicted errors
(Figure 7). Thus, the phase 3 Kalman filtering is a required
step for averaging through gappy and noisy hourly results.

[43] The Kalman filter operation rapidly fills in gaps
with consecutive estimates. For the 16 runs considered,
coverage reached 98% after an average of 33 h but fill
times varied from 3 h (good conditions) to 72 h (consider-
able fog). However, this measure is different from the time

Figure 6. cBathy error dependence on offshore wave height, both averaged over individual days.
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it takes to reduce noise and stabilize estimates. The latter
measure is difficult to determine since predictions stabilize
to different error levels within the 4 days averaging win-
dow depending on wind and wave conditions. Visually,
estimates seem to stabilize in approximately 1 day, faster
than had been expected. However, the best estimates were

associated with very low-wave conditions (perfect survey
days for the CRAB), so the final day of each sequence was
usually the best.

[44] The role of Kalman filtering in smoothing through
natural cycles of errors is made more obvious in Figure 9.
The lower plot shows the final Kalman bathymetry result,

Figure 8. Histogram of fraction of successful data return for each hourly analysis in the dataset.

Figure 7. cBathy estimates for an example morning data collection on 19 September 2010. The center
and right plots show the current hour bathymetry estimate and its error, respectively while the left plot
shows the Kalman-filtered results. Gaps in the hourly analysis (indicated graphically by dark red and cor-
responding to ‘‘nan’’ values, i.e., failed data returns) were caused by sun glitter and very low waves and
are not uncommon.
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h, for an example transect at y¼ 850 m for a representative
case of 22 November 2010. A single bar is apparent at
x¼ 200 m while values landward of x¼ 90 m correspond to
dry beach so are invalid. The upper plot shows the devia-
tion of hourly bathymetry estimates from this profile, i.e.,
ĥ x; tð Þ � h xð Þ, for the 41 hourly estimates starting 3 days
earlier and ending at sunset on the day of the survey. The
estimated time of the survey is marked by a horizontal blue
line at run number 34.

[45] Tidal variations are apparent by the change in the
width of the dry beach, shown as the blue region of invalid
data on the left, wider at low tide and narrower at high tide.
The role of breaking over the bar is also apparent. On the
first day of analysis (upper part of Figure, run numbers 1–
10), the wave height reached 1.4 m and Argus images show
significant breaking over the bar. cBathy hourly results
show a deep anomaly associated with the onset of breaking
and a shallow region in the trough. Vestiges of the breaking
continue to occur on the second day as wave heights
dropped to 0.5 m and in the final 2 days when wave heights
were lower. These shorter time scale deviations do not
appear to be bathymetric in nature but instead represent
failings of the linear dispersion relationship for breaking
waves and errors in the phase 1 wave number estimation
algorithm near the onset of breaking. Fortunately, these
anomalous values are associated with larger error bars
(not shown) so pass through the Kalman filter with little
impact.

[46] The magnitudes of error predictions (equation (7))
were found to under-predict observed error. For frequency-
combined results, ĥ, the under-prediction averaged a factor
of 3.3 (standard deviation of 0.62) whereas for Kalman-fil-
tered results, the ratio of observed to estimated error was
7.17 (standard deviation of 1.47). Plant et al. [2008] found
the same problem using a different technique and con-
cluded that predicted error surfaces were still useful indica-
tors of relative merit but that overpredictions likely arose
from insufficient understanding of the effective number of
degrees of freedom in the analysis. For our cBathy results,
features in observed error, for example a small mis-location
of sand bar position, were also found to correspond well to
features in predicted error even though the magnitudes of
the predicted error were too small.

3.3. Agate Beach Test

[47] Agate Beach is a dissipative Oregon beach located 5
km north of the city of Newport. An Argus Station is
located atop Yaquina Head at an elevation of 128 m, with
three cameras providing a view of a large region to south.
Tide data were retrieved from National Ocean Survey
(NOS) station 9435380 while wave data came from
Coastal-Marine Automated Network (CMAN) buoy 46050.

[48] cBathy data collections were begun in 2009 for de-
velopment and testing purposes using the landward-most
two cameras. A jet ski survey on 13 July 2011 provided an
opportunity to test cBathy accuracy on a west coast beach.

Figure 9. Deviation of hourly bathymetry estimates, ĥ, from Kalman-filtered bathymetry, h, for an
example transect at y¼ 850 m for the survey comparison completed on 22 November 2010. The lower
plot shows the Kalman result, h, including deterioration to invalid values for x<90 m (the shoreline).
The upper plot shows the time series of differences between the 41 hourly cBathy estimates spanning 4
days and this final Kalman result. The time of the actual survey is shown by the horizontal line at run
number 34.
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To allow better offshore coverage, the cBathy pixel array
was extended on that day to include an offshore camera
(three camera sampling continues to this day).

[49] The high-camera elevation allows analysis of a
much larger region than at Duck, spanning 1600 by 2500 m
in the cross shore and alongshore, respectively. Because
the tide range is often 3 m or more, this region includes a
substantial intertidal area for which good data are returned
only at high tide. The cBathy array included approximately
10,000 pixels with a cross shore and alongshore spacing of
15 and 30 m, respectively. Collection and analysis parame-
ters are the same as in Table 1 with the exceptions of analy-
sis grid spacing is 25 by 50 m, analysis smoothing scales
are 50 by 100 m and � was to 3.0. No data are available to
tune the process noise model for this site, so values were
subjectively chosen (CQ ¼ 0:005; x0 ¼ 700; �x ¼ 300).

[50] Ground truth data were collected by the Morphol-
ogy Monitoring Group at Oregon State University (Rug-
giero, personal communication) using RTK-GPS position
and fathometer depths on a jet ski, and consisted of a suite
of 15 cross-shore transects that were subsequently interpo-
lated to a grid using loess interpolation. The survey meth-
odology is described as being subdecimeter accurate
[Ruggiero et al., 2005]. The region of common coverage
between the Argus and jet ski data spanned 1175 by
1995 m in the cross shore and alongshore, respectively.

[51] Figure 10 compares the jet ski survey (left plot)
with the last cBathy result for 13 July. In contrast to the
Duck results, depths as deep as 14 m are measured, a conse-
quence of the greater field of view. The depth plots (left
and center plots) are in reasonable agreement but the differ-
ence plot (right plot) shows that cBathy overestimates the
true depth in shallow water and underestimates far from the
camera. The dependence of bias and RMS errors on depth
is shown by the dashed line in Figure 11. Several factors
could contribute to errors. In shallow water, surf zone
waves act as bores and the wave speed depends on wave
amplitude in ways not represented by the linear dispersion
relationship. In addition, wave set up can contribute to cBa-
thy depth overestimation. Also, the jet ski data themselves
have larger error in shallow water due to bubble problems

and noisy interpolation (jet ski data with interpolation
errors greater than 0.35 m and cBathy data with predicted
error greater than 0.5 m have been removed from the statis-
tics in Figure 11 but are part of the mapped data in
Figure 10).

[52] In deeper water, the dominant error is an area of
underestimation for x>1100 and y>�600 m (see also the
large bias and RMS errors in the 10 m depth bin in Figure
11). In fact, data collection for the offshore region
(x> 1400 m) had only been started on the morning of 13
July, so cBathy estimates were primarily based on only 1
day of data for which the wave period was only 7.11 s
(depth over wavelength was greater than 1/6 for this off-
shore region, so closer to deep water conditions than shal-
low). To allow a greater influence by occasional longer
period waves, a second comparison was made between the
13 July jet ski results and Kalman filtered cBathy results
from 13 to 30 July. The updated comparison was restricted
to depth greater than 6 m to avoid contamination by visu-
ally apparent bathymetry changes in the more dynamic
shallower parts of the profile and to focus on the deeper
region that responds only slowly to summer waves. The
solid line in Figure 11 shows the bias and RMS errors are
greatly reduced with the incorporation of more days of
wave observation including periods of longer period waves
(56% of the days had offshore peak periods greater than
10 s). For the composite data set (13 July data for h� 6 m,
30 July data for h> 6 m), the bias and RMS error were
found to be �0.41 and 0.56 m, respectively for all depths
from 0 to 15 m.

4. Discussion

[53] The cBathy data collection and analysis protocols
outlined above provide a good tool for quantitative near-
shore monitoring and prediction. Errors are small and
flagged reasonably by confidence estimates and products
are delivered automatically for daylight hours. Even in the
absence of new data due to fog or other problems, estimates
degrade gracefully as the Kalman process error builds. Ba-
thymetry is usually the limiting input to nearshore

Figure 10. Comparison of 13 July 2011 jet ski survey (left plot) with cBathy estimate from that day
(middle plot). The right plot maps the error (survey-cBathy). All depths are in meters. The cBathy time
stamp is in GMT. The cameras view from the bottom of the page.
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prediction and cBathy provides a low-cost, logistically ro-
bust solution to the bathymetry data starvation problem.

[54] The stage three Kalman filter step is key to the suc-
cess of the algorithm. It allows integration of results of
mixed quality in an optimally weighted way to create a
temporally smoothed product with sensible error statistics.
The least known component of the Kalman filter is the
form to chose for the process error, Q. This term represents
the rate of growth of unmodeled variance, in this case the
rate of increase of bathymetric variability from a prior state
due to the combination of sediment transport processes at
all scales. The existence of a remarkable 39 day set of daily
bathymetry surveys at Duck allows direct estimation of Q
at that site and for that particular sand bar system. However
no comparable data exists for other beach types like the
highly dissipative Agate Beach and, even for Duck, sand
bars are known to change location on interannual time
scales [for example, Ruessink et al., 2003]. Long and Plant
[2012] explore the impact of different choices of process
error on the performance of Kalman Filtering.

[55] The current algorithm uses only linear dispersion
for depth estimation, an approximation that should result in
errors in the surf zone where finite amplitude effects
increase wave celerity. Indeed, errors are smallest for small
waves (Figure 6), including near-glassy seas that one of the
authors assumed would provide no useful signal. Kalman
filtering through different stages of the tide helps by auto-
matically weighting better estimates, for instance at high
tide when there may be no breaking over a sand bar. Simi-
larly, filtering over the tide eliminates problems at the

plunge point where linear dispersion is a bad approxima-
tion and spatial coherence is low.

[56] While depth estimates based on linear dispersion are
always returned and represent a first order bathymetry solu-
tion, cBathy also returns vector wave number estimates as
a function of frequency that can be used in more sophisti-
cated data assimilation schemes that are consistent with fi-
nite amplitude dispersion effects. Thus, first order estimates
can be used as a seed for more sophisticated methods that
exploit other optical (or other source) variables.

[57] The dispersion relation (equation (1)) can also be
written to include the effect of currents and Doppler shift-
ing. In this case, the analysis can be expanded to solve for
bathymetry as well as directional currents [see, e.g., Pio-
trowski and Dugan, 2002]. Doppler shifts depend on the
current velocity relative to the wave celerity so are strong-
est for short waves. Thus analysis to determine both ba-
thymetry and currents should additionally examine higher
frequencies than are needed just for bathymetry work.
Alternately, since the Doppler effect depends on the com-
ponent of wave celerity in the direction of the current (usu-
ally near zero for alongshore currents in the surf zone),
differentiation between depth- and current-dependent
effects are more apparent for directionally spread wave
fields such as in tidal inlet environments. Velocity estima-
tion will be added to cBathy in future years.

[58] The shoreline bias found here (Figure 5) is worst for
a steep beach such as Duck where analysis tiles can include
signals from both relative deep water and dry beach. For
flatter beaches such as Agate, this should in principle be

Figure 11. Depth dependence of bias (upper plot) and RMS error (lower plot). Dashed lines corre-
spond to the 13 July cBathy estimates while solid shows the errors for deeper waters for a later 30 July
cBathy estimate, after longer wave periods had contributed. Negative bias corresponds to cBathy depth
overestimates.
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less of a problem although the one example tested still
shows bias.

[59] Errors from the Duck case are averaged over an area
of 420 by 1000m and tend to be worst at the offshore boun-
daries. Performance statistics would be improved if only
shallower waters (< 4 m) had been considered but it was
decided to present results from the full data set. Errors at
Agate Beach were low in depths as great as 14 m and dis-
tances from the camera as great as several kilometers as
long as data were ingested into the Kalman filter over an
extended period of time. It is recognized that longer period
waves are required to successfully probe these greater
depths, so Kalman averaging is likely needed over longer
periods of time (this happens automatically). The range to
which useful results can be obtained is limited by a maxi-
mum graze angle (arctangent of the range divided by the
camera height). At low-graze angles (near horizontal
looks), pixel footprints stretch excessively in the range
direction so smear wave content within each pixel. Thus,
the 128 m camera height of Agate Beach supports roughly
three times the available range as the 43 m height at Duck,
given the same wave conditions.

[60] The bulk of the testing discussed here was done on a
barred East Coast (of the US) beach due to the availability
of data from this site. In some ways, the steep sand bars at
such a site form a challenge for bathymetry algorithms due
to the large bathymetric and hydrodynamic gradients. In
contrast, West Coast beaches commonly have low slopes,
nonabrupt shorelines, larger tidal ranges and broader surf
zones full of well-developed breaking bores. Each of these
aspects may make bathymetry estimation easier (although
bores may require finite amplitude dispersion correction).
More ground truth comparisons should be done on flatter
beaches to better understand cBathy performance on these
different sites. This, of course, requires the availability of
more West Coast surveys in the vicinity of Argus Stations
or equivalent sampling systems.

[61] No testing has been done in semienclosed seas.
Shorter period waves would require a denser pixel spacing
and accommodation of higher frequencies in the choice of
frequency analysis bands. The depths to which bathymetry
can be reasonably estimated varies as the deep water wave-
length, so the square of the wave period, so depth range
would clearly be lost. As with the tested beaches, perform-
ance is expected to be best for low-amplitude waves includ-
ing conditions so small that no useful signal would be
expected (the signal processing methods are powerful).

[62] While cBathy is tested here with optical data, the
methods should also apply to any sensor (radar or infrared)
that can return time series data over a dense array of
locations.

5. Conclusions

[63] A new algorithm to estimate submerged bathymetry
based on ocean wave celerity is presented and tested. The
analysis is based on a moderately dense (subwavelength)
spatial array of optical time series broken up into analysis
tiles whose size, unlike those for spatial Fourier methods,
can be smaller than an ocean wavelength. Analysis consists
of three phases. Vector wave number for each of a suite of
candidate frequencies is first found from the phase slopes

of the first complex EOF of the cross-spectral matrix. A
single depth estimate for each location for each data collec-
tion is then found from a weighted least squares fit to the
most important frequency-wave number pairs. Finally, a
Kalman running filter is computed in time to yield an esti-
mate that is robust to camera or weather problems such as
fog or rain.

[64] The algorithm was tested in a standard configuration
against 16 ground truth surveys at Duck, NC, collected
over 2 years. The average bias and RMS error over a 420
by 1000 m region were 0.19 and 0.51 m, respectively, with
the worst errors near the offshore limit of data collection
and very near the shoreline where analysis tiles mix wave
signals with those from the dry beach. Nearshore sand bars
were surprisingly well rendered including details of the bar
trough and rip channels that dissect the sand bar. Result
from a single survey at Agate Beach, a dissipative site, are
similar with a mean bias and RMS error of �0.41 and 0.56
m, respectively, over a region that extended several kilo-
meters from the cameras and included depth as great as 14
m.

[65] The new algorithm is an advance over prior work in
that it allows good two-dimensional spatial resolution, it
uses EOFs to best weight coherent wave motions and it
uses a Kalman filter in time to span data gaps and problem
areas and to gracefully degrade prior estimates in the ab-
sence of new information. Processing is fully automated.

[66] Acknowledgments. We would like to thank John Stanley for all
the work that keeps Argus alive and productive and for the production
cBathy analysis discussed here. Many thanks to Gabriel Garcia for guiding
me through my first experience writing in Lyx. Thanks also to the Jesse
McNinch and the staff of the FRF for restarting CRAB surveys and for
providing the Duck survey data used here, and to Diana Di Leonardo and
Peter Ruggiero for supplying analyzed jet ski survey data for Agate beach.
We are grateful for the support of the ONR Littoral Geosciences and
Optics program, grant N00014-11-10393 and the Multi University
Research Initiative, grant number N00014-10-1–0932. NRL was supported
by the Office of Naval Research through funding of the rapid transition
project ‘‘Estimation of surf zone bathymetry using Unmanned Aircraft
Systems.’’

References
Birkemeier, W. A., and C. Mason (1984), The crab: A unique nearshore

surveying vehicle, J. Surv. Eng., 110, 1–7.
Davidson, M., M. Van Koningsveld, A. de Kruif, J. Rawson, R. Holman, A.

Lamberti, R. Medina, A. Kroon, and S. Aarninkhof (2007), The coast-
view project: Developing video-derived coastal state indicators in sup-
port of coastal zone management, Coastal Eng., 54(6–7), 463–475.

Dugan, J., W. Morris, and K. Vierra (2001a), Jetski-based nearshore bathy-
metric and current survey system, J. Coastal Res., 17(4), 900–908.

Dugan, J., C. Piotrowski, and J. Williams (2001b), Water depth and surface
current retrievals from airborne optical measurements of surface gravity
wave dispersion, J. Geophys. Res., 106(C8), 16,903–16,915.

Holman, R., and J. Stanley (2007), The history and technical capabilities of
Argus, Coastal Eng., 54, 477–491.

Irish, J., and W. Lillycrop (1999), Scanning laser mapping of the coastal
zone: The shoals system, ISPRS J. Photogramm. Remote Sens., 54(2–3),
123–129.

Kalman, R. (1960), A new approach to linear filtering and prediction prob-
lems, J. Basic Eng., 82(1), 35–45.

Lippmann, T. C., and R. A. Holman (1989), Quantification of sand bar mor-
phology: A video technique based on wave dissipation, J. Geophys.
Res., 94(C1), 995–1011.

Lippmann, T. C., R. A. Holman, and K. Hathaway (1993), Episodic, non-
stationary behavior of a two sand bar system at duck, nc, usa, J. Coastal
Res., SI(15), 49–75.

HOLMAN ET AL.: THE CBATHY ALGORITHM

14



Long, J., and N. Plant (2012), Extended kalman filter network for forecast-
ing shoreline evolution, Geophys. Res. Lett., 39, L13603, doi:10.1029/
2012GL052180.

Lyzenga, D., N. Malinas, and F. Tanis (2006), Multispectral bathymetry
using a simple physically based algorithm, IEEE Trans. Geosci. Remote
Sens., 44(8), 2251–2259.

Miller, H. C., W. A. Birkemeier, and A. E. DeWall (1983), Effects of
CERC research pier on nearshore processes. Coastal Structures ’83,
Proc. ASCE: 769–784.

Mobley, C., et al. (2005), Interpretation of hyperspectral remote-sensing
imagery via spectrum matching and look-up tables, Appl. Opt., 44(17),
3576–3592.

Piotrowski, C., and J. Dugan (2002), Accuracy of bathymetry and current
retrievals from airborne optical time-series imaging of shoaling waves.,
IEEE Trans. Geosci. Remote Sens., 40(12), 2602–2612.

Plant, N., and R. Holman (1997), Intertidal beach profile estimation using
video images, Mar. Geol., 140, 1–24.

Plant, N., K. Holland, and M. Haller (2008), Ocean wavenumber estimation
from wave-resolving time series imagery, IEEE Trans. Geosci. Remote
Sens., 46, 2644–2658.

Plant, N., K. Edwards, J. Kaihatu, J. Veeramony, L. Hsu, and K. Holland
(2009), The effect of bathymetric filtering on nearshore process model
results, Coastal Eng., 56, 484–493.

Ruessink, B., K. Wijnberg, R. Holman, Y. Kuriyama, and I. van Enckevort
(2003), Inter-site comparisons of interannual nearshore bar behavior, J.
Geophys. Res., 108(C8), 3249, doi:10.1029/2002JC001,505.

Ruggiero, P., G. M. Kaminsky, G. Gelfenbaum, and B. Voigt (2005), Sea-
sonal to interannual morphodynamics along a high-energy dissipative lit-
toral cell, J. Coastal Res., 21(3), 553–578.

Sallenger, A., et al. (2003), Evaluation of airborne topographic lidar for
quantifying beach changes, J. Coastal Res., 19(1), 125–133.

Senet, C., J. Seemann, S. Flampouris, and F. Ziemer (2008), Determination
of bathymetric adn current maps by the method disc based on the analy-
sis of nautical x-band radar image sequences of the sea surface, IEEE
Trans. Geosci. Remote Sens., 46(8), 2267–2279, doi:10.1109/TGRS.
2008.916474.

Stockdon, H., and R. Holman (2000), Estimation of wave phase speed and
nearshore bathymetry from video imagery, J. Geophys. Res., 105(C9),
22,015–22,033.

Trizna, D. (2001), Errors in bathymetric retrievals uisng linear dispersion
in 3d fft analysis of marine radar ocean wave imagery, IEEE Trans. Geo-
sci. Remote Sens., 39(11), 2465–2469.

van Dongeren, A., N. Plant, A. Cohen, D. Roelvink, M. Haller, and P. Cata-
lan (2008), Beach wizard: Nearshore bathymetry estimation through
assimilation of model computations and remote observations, Coastal
Eng., 55, 1016–1027.

Walker, R. (1994), Marine Light Field Statistics, Pure Appl. Opt. Ser., John
Wiley, New York.

Williams, W. (1947), The determination of gradients on enemy-held
beaches, Geogr. J., 109(1–3), 76–93.

HOLMAN ET AL.: THE CBATHY ALGORITHM

15


	l
	l
	l
	l
	l

